21 research outputs found

    Strong Modification of the Nonlinear Optical Response of Metallic Subwavelength Hole Arrays

    Get PDF
    The influence of hole shape on the nonlinear optical properties of metallic subwavelength hole arrays is investigated. It is found that the amount of second harmonics generated can be enhanced by changing the hole shape. In part this increase is a direct result of the effect of hole shape on the linear transmission properties. Remarkably, in addition to enhancements that follow directly from the linear properties of the array, we find a hot hole shape. For rectangular holes the effective nonlinear response is enhanced by more than 1 order of magnitude for one particular aspect ratio. This enhancement can be attributed to slow propagation of the fundamental wavelength through the holes which occurs close to the hole cutoff

    Mutations in the M-Gene Segment Can Substantially Increase Replication Efficiency of NS1 Deletion Influenza A Virus in MDCK Cells

    Get PDF
    Influenza viruses unable to express NS1 protein (delNS1) replicate poorly and induce high amounts of interferon (IFN). They are therefore considered as candidate viruses for live-attenuated influenza vaccines. Their attenuated replication is generally assumed to result from the inability to counter the antiviral host response, as delNS1 viruses replicate efficiently in Vero cells, which lack IFN expression. In this study, delNS1 virus was parallel passaged on IFN competent MDCK cells, which resulted in two strains that were able to replicate to high virus titres in MDCK cells due to adaptive mutations in especially the M-gene segment, but also the NP and NS gene segments. Most notable were clustered U-to-C mutations in the M segment of both strains and clustered A-to-G mutations in the NS segment of one strain, which presumably resulted from host cell mediated RNA editing. The M segment mutations in both strains changed the ratio of M1 to M2 expression, probably by affecting splicing efficiency. In one virus, 2 amino acid substitutions in M1 additionally enhanced virus replication, possibly through changes in the M1 distribution between the nucleus and the cytoplasm. Both adapted viruses induced equal levels of IFN as delNS1 virus. These results show that the increased replication of the adapted viruses is not primarily due to altered IFN induction, but rather related to changes in M1 expression or localization. The mutations identified in this paper may be used to enhance delNS1 virus replication for vaccine production

    Microalgae: the green gold of the future? : large-scale sustainable cultivation of microalgae for the production of bulk commodities

    No full text
    The cultivation of microalgae can play an important role in environmentalfriendly production of raw materials for biodiesel. In addition, algae offer several other useful materials for the food and chemical industry. This booklet describes the possibilities for economically viable large scale algae cultivation for the production of valuable products and the role of the new algae centre in Wageningen, AlgaePARC

    Microalgen: het groene goud van de toekomst? : grootschalige duurzame kweek van microalgen voor de productie van bulkgrondstoffen

    No full text
    De kweek van microalgen kan een belangrijke rol spelen in milieuvriendelijke productie van grondstoffen voor biodiesel. Daarnaast leveren algen tal van andere nuttige stoffen voor de levensmiddelen- en chemische industrie. Dit boekje brengt de huidige stand van zaken omtrent algenkweek in kaart. Daarnaast analyseert het de mogelijkheden van economisch rendabele algenkweek op grote schaal voor de winning van waardevolle producten en de rol die het Wagenings algencentrum, AlgaePARC, daarin gaat vervullen

    Effect of natural and chimeric haemagglutinin genes on influenza A virus replication in baby hamster kidney cells.

    No full text
    Baby hamster kidney (BHK21) cells are used to produce vaccines against various viral veterinary diseases, including rabies and foot-and-mouth-disease. Although particular influenza virus strains replicate efficiently in BHK21 cells the general use of these cells for influenza vaccine production is prohibited by the poor replication of most strains, including model strain A/PR/8/34 [H1N1] (PR8). We now show that in contrast to PR8, the related strain A/WSN/33 [H1N1] (WSN) replicates efficiently in BHK21 cells. This difference is determined by the haemagglutinin (HA) protein since reciprocal reassortant viruses with swapped HAs behave similarly with respect to growth on BHK21 cells as the parental virus from which their HA gene is derived. The ability or inability of six other influenza virus strains to grow on BHK21 cells appears to be similarly dependent on the nature of the HA gene since reassortant PR8 viruses containing the HA of these strains grow to similar titres as the parental virus from which the HA gene was derived. However, the growth to low titres of a seventh influenza strain was not due to the nature of the HA gene since a reassortant PR8 virus containing this HA grew efficiently on BHK21 cells. Taken together, these results suggest that the HA gene often primarily determines influenza replication efficiency on BHK21 cells but that in some strains other genes are also involved. High virus titres could be obtained with reassortant PR8 strains that contained a chimeric HA consisting of the HA1 domain of PR8 and the HA2 domain of WSN. HA1 contains most antigenic sites and is therefore important for vaccine efficacy. This method of producing the HA1 domain as fusion to a heterologous HA2 domain could possibly also be used for the production of HA1 domains of other viruses to enable the use of BHK21 cells as a generic platform for veterinary influenza vaccine production

    Effect of natural and chimeric haemagglutinin genes on influenza A virus replication in baby hamster kidney cells.

    No full text
    Baby hamster kidney (BHK21) cells are used to produce vaccines against various viral veterinary diseases, including rabies and foot-and-mouth-disease. Although particular influenza virus strains replicate efficiently in BHK21 cells the general use of these cells for influenza vaccine production is prohibited by the poor replication of most strains, including model strain A/PR/8/34 [H1N1] (PR8). We now show that in contrast to PR8, the related strain A/WSN/33 [H1N1] (WSN) replicates efficiently in BHK21 cells. This difference is determined by the haemagglutinin (HA) protein since reciprocal reassortant viruses with swapped HAs behave similarly with respect to growth on BHK21 cells as the parental virus from which their HA gene is derived. The ability or inability of six other influenza virus strains to grow on BHK21 cells appears to be similarly dependent on the nature of the HA gene since reassortant PR8 viruses containing the HA of these strains grow to similar titres as the parental virus from which the HA gene was derived. However, the growth to low titres of a seventh influenza strain was not due to the nature of the HA gene since a reassortant PR8 virus containing this HA grew efficiently on BHK21 cells. Taken together, these results suggest that the HA gene often primarily determines influenza replication efficiency on BHK21 cells but that in some strains other genes are also involved. High virus titres could be obtained with reassortant PR8 strains that contained a chimeric HA consisting of the HA1 domain of PR8 and the HA2 domain of WSN. HA1 contains most antigenic sites and is therefore important for vaccine efficacy. This method of producing the HA1 domain as fusion to a heterologous HA2 domain could possibly also be used for the production of HA1 domains of other viruses to enable the use of BHK21 cells as a generic platform for veterinary influenza vaccine production

    Adaptation of a Madin-Darby canine kidney cell line to suspension growth in serum-free media and comparison of its ability to produce avian influenza virus to Vero and BHK21 cell lines

    No full text
    Madin–Darby canine kidney (MDCK) cells are currently considered for influenza vaccine manufacturing. A drawback of these cells is their anchorage dependent growth, which greatly complicates process scale-up. In this paper a novel MDCK cell line (MDCK-SFS) is described that grows efficiently in suspension and retained high expression levels of both a-2,6 and a-2,3 sialic acid receptors, which bind preferably to human and avian influenza viruses, respectively. The production of avian influenza virus by BHK21, Vero and MDCK-SFS cell lines was compared. Although BHK21 cells consisted of two populations, one of which lacks the a-2,3 receptor, they supported the replication of two influenza strains to high titres. However, BHK21 cells are generally not applicable for influenza production since they supported the replication of six further strains poorly. MDCK-SFS cells yielded the highest infectious virus titres and virus genome equivalent concentration for five of the eight influenza strains analyzed and the highest hemagglutination activity for all eight virus strains. Taken together with their suitability for suspension growth this makes the MDCK-SFS cell line potentially useful for large scale influenza virus production

    MDCK cell line with inducible allele B NS1 expression propagates deINS1 inflenza virus to high titres

    No full text
    Influenza A viruses lacking the gene encoding the non-structural NS1 protein (delNS1) have potential use as live attenuated vaccines. However, due to the lack of NS1, virus replication in cell culture is considerably reduced, prohibiting commercial vaccine production. We therefore established two stable MDCK cell lines that show inducible expression of the allele B NS1 protein. Upon induction, both cell lines expressed NS1 to about 1000-fold lower levels than influenza virus-infected cells. Nevertheless, expression of NS1 increased delNS1 virus titres to levels comparable to those obtained with an isogenic virus strain containing an intact NS1 gene. Recombinant NS1 expression increased the infectious virus titres 244 to 544-fold and inhibited virus induced apoptosis. However, NS1 expression resulted in only slightly, statistically not significant, reduced levels of interferon-ß production. Thus, the low amount of recombinant NS1 is sufficient to restore delNS1 virus replication in MDCK cells, but it remains unclear whether this occurs in an interferon dependent manner. In contrast to previous findings, recombinant NS1 expression did not induce apoptosis, nor did it affect cell growth. These cell lines thus show potential to improve the yield of delNS1 virus for vaccine production
    corecore